
VectorLite EncrypƟon

Version 5M

 User’s Manual

July 26, 2021 Version 5M

Warning

This soŌware is provided for algorithmic proof of concept tesƟng and demonstraƟon use only.

This soŌware should not to be used to protect files of value or need.

It is recommended to contain the soŌware within an independent folder or directory separate from useful

valuable files. Test files should be copied into a test folder – leaving original files in place. Plain-text test files

are provided, in addiƟon to a program to create test paƩerned files.

No W arranty or G uarantee is E xpressed or I mplied .

VectorLite EncrypƟon has not been peer reviewed. Please test / demonstrate with cauƟon. Version 5M

tesƟng has improved, but bugs may / likely exist.

Export RestricƟons

The soŌware and executable programs may be subject to United States export regulaƟon. Please comply with

all regulatory laws and governance.

Version 5M Document Revision History

July 28, 2021 IniƟal Release

AddiƟons to this document will be made as Ɵme permits.

Author

Robert J. Miller

E-Mail: robtjmiller4249@gmail.com

 bob@secretware.org

2

July 26, 2021 Version 5M

Notes

This document is intended for all users, including the paƟent technically advanced

Version 5M

Version 5M is a substanƟal upgrade, with emphasis upon:

1. MulƟ threaded performance for the encrypt and decrypt programs

2. Improved I/O performance, buffering input / output up to 100,000 bytes at a Ɵme

3. EliminaƟon / simplificaƟon of command line opƟons no longer relevant

4. A new random program to beƩer handle C run-Ɵme library pseudo-random issues

5. Numerous clean-ups, bug fixes, and so forth.

6. The inclusion of two new analyƟcal uƟlity programs.

a) file-stats Display mean, std dev, and co-var (cv) of a file’s histogram of byte values

b) check-proximity Display histogram of average distance between common byte values

Known LimitaƟons

1. Plain-text file sizes are limited by the standard 32 bit C library I/O funcƟons. The maximum plain-text

input file size to encrypt is approximately 1.2 giga-bytes, and is actually limited by the larger output

cipher-text file which must later be read as input by decrypt. Cipher-text files are typically 60 % larger

than the plain-text input file size. A later release may implement the 64 bit IO to remove this limit.

2. Several counters and index variables may also be 32 bit limited at this Ɵme.

Known Risks

1. file-stats displays a file’s byte value staƟsƟcs based on the histogram, not the individual bytes.

DeterminaƟon if the two computaƟons result in the same or different results will be performed soon.

The intended purposed of file-stats is to determine input file suitability to random – that is all.

2. SoŌware generated random numbers will always be an issue – the new random program lessons the C

language run-Ɵme library’s srand and rand funcƟons predictability. This is by introducing an addiƟonal

unknown (random’s input file), and mulƟple human provided random seed values spread across a wide

range of accepted values (in place of plaƞorm clock Ɵme).

3

July 26, 2021 Version 5M

V ersion 5 L (October 2020)

For tesƟng and development:

1 encrypt A key-table usage trace-file output opƟon with command line specified filename

2 encrypt A random number usage trace-file output opƟon, also with cmd line filename

3 key-trace A program to analyze the results of the encrypt program’s key usage trace file

4 key-line-col A program to display a key-table page’s line and row values

For BeƩer EncrypƟon:

1 The addiƟon of an “Alpha Bias Array” of 1024 random values to pre-modify plain-text

2 The addiƟon of a “Displacement Bias Array” of 1024 random values to post modify traverse results

3 The addiƟon of a “Re-Vector Bias Array” of 1024 random values to post modify re-vector key x, y.

These three new bias arrays are iniƟally populated and included within the buildkey key-table output files.

The arrays are subsequently modified during run-Ɵme as the encrypƟon / decrypƟon takes place, never using

the same entry twice. The arrays are updated at random (non repeaƟng) points near buffer exhausƟon, each

differently. The encrypt and decrypt programs track and update the arrays in the same manner via a method

described later.

UƟlity Programs:

1 key-summary Quickly display 1st key-table page’s alpha and vector table’s properƟes

2 key-details More detail than key-summary

3 key-dump Even more detail than key-details – each value dumped out

4 key-line-col Display an individual line and column key-table page’s data values

5 key-Trace Histogram and detailed info on key-table traversing history and usage

6 compare-files Compare two files, providing info on 1st point of variance, if diff

7 check-paƩern-bytes-1 Counts repeƟƟve paƩerns of bytes within a file, inclusive counts

8 check-paƩern-bytes-2 Counts repeƟƟve paƩerns of bytes within a file, exclusive counts

9 histogram-bytes Output a histogram of byte values within a file

10 create-file Create a file of repeƟƟve binary values or character strings

The uƟlity programs have not been peer reviewed and validated. The programs are the author’s best

aƩempts given Ɵme available to work on them.

4

July 26, 2021 Version 5M

IntroducƟon

The VectorLite EncrypƟon soŌware provides three basic programs: “buildkey”, “encrypt”, & “decrypt”.

Version 5M introduces “random” to assist in creaƟon of a “randomizaƟon file” for use with buildkey.

The buildkey program generates a key-table file, which is used by the encrypt and decrypt programs to

encipher and decipher files.

The encrypƟon and decrypƟon end points require possession of the same key-table file. It is a symmetrical

cryptography system.

The cipher-text files typically expand from the plain-text file’s size by 60 % or more. Cipher-text files include

enciphered false data at the beginning, end, and various points in between. Key-tables randomly self modify

during execuƟon when a plain-text file exceeds a minimum size.

The key-table files are rather large for a modern-day cryptographic system – the minimum size is about 132

kilo-bytes (1 mega-bits). Key tables files may include a maximum of 512 “pages”, for a maximum crypto-key

file size of 33 mega-bytes (268 mega-bits).

As with any other soŌware, modest intelligent usage would be required for the system to be secure.

VectorLite makes liƩle aƩempt to secure the key-table files on the host plaƞorms. Responsibility to do so is

leŌ up the end-user, and beyond current scope.

5

July 26, 2021 Version 5M

Typical Usage

The VectorLite soŌware package includes three (3) programs for normal operaƟon: buildkey, encrypt, &

decrypt. Use of the random program is recommended, but opƟonal. All programs are provided in shell /

command-line versions without a GUI interface. The general command line syntax of each is:

prompt> random <input file> <output randomizaƟon file>

prompt> buildkey <randomizaƟon file> <key-table file>

prompt> encrypt <plain-text file> <cipher-text file> <key-table file>

prompt> decrypt <cipher-text file> <plain-text file> <key-table file>

All files within the brackets are required. Several non-required command line opƟons exist for each program.

For tesƟng, the following file name and type convenƟons are recommended:

1 RandomizaƟon file type “.ran”

2 Key-table file type “.vec”

3 Plain-text file type “.ptext”

4 Cipher-text file type “.ctext”

5 Decrypted files < original file type, but NOT the file name >

File names beginning with “test” are suggested:

prompt > random lake.jpg test-1.ran

prompt > buildkey test-1.ran test-1.vec

prompt> encrypt lake.jpg test-1.ctext test-1.vec

prompt> decrypt test-1.ctext test-1.jpg test-1.vec (note use of the original file type)

The sequence above preserves the original file by not over-wriƟng it later via decrypt. The common file-name

of “test-1” relates files together. JPG files are convenient for tesƟng, as are MP3 (or other format) music files.

When folder contents are displayed in Windows File Explorer, with the preview opƟon enabled, – the JPG file’s

preview image quickly verifies a correct encrypt → decrypt cycle, or alternaƟvely displays an interesƟng and

very noƟceable preview image corrupƟon in the event ot an error that needs invesƟgaƟon.

The files “test-1.ran” and “test-1.vec” would necessarily be secured and protected as secret keys in the real

world. It may be wise to secure the file lake.jpg, or not make it known as the source of input to random.

Files may be encrypted with mulƟple passes of encrypt using the same or different key-table files. The inverse

of this process must be performed with the decrypt program, using key-table files in reverse order if different.

6

July 26, 2021 Version 5M

The Random Program

Usage: random < variable byte file > < randomized byte file >

 Where: < variable byte file > = File to extract randomized byte values from

 < randomized byte file > = Output file of randomized values 0 to 255.

 OpƟons: /h help

 /q quiet mode

The random program generates a file of randomized bytes, based upon an extracƟon of byte values from the
input “variable byte file”, and subsequently scrambling them. The resultant output file oŌen appears to make
a more suitable file for input to the buildkey program.

The input file may by any type of file which meets 3 minimum qualificaƟons:

(1) The file must contain at least 225 of the 256 byte values from 0 to 255

(2) The byte value quanƟƟes coefficient variable (cv) must be 0.5 or less

(3) The file must be 10,000 bytes or larger.

An input file size greater than 100,000 bytes is recommended. The output file of randomized values is

currently hard fixed at 100,000 bytes. This may change in the future. The author uses JPG files for tesƟng.

AŌer the input file qualificaƟons are checked, random will ask for a minimum of 5 integer values to use as

independent seeds to the C language runƟme library srand() funcƟon. A maximum of 200 values may be

input. An input value of zero (0) terminates the input.

The algorithm used to generate the random numbers scans the input file randomly to obtain one byte at a

Ɵme, slowing increasing the limit of common byte values obtained. The number of common values allowed

to accumulate increases with subsequent randomized passes through.

The first integer input seeds the srand () library call to obtain random indexes to scan the input file. All

subsequent integers re-seed srand () to scramble the byte’s order they were obtained in.

Preliminary analysis of the output files indicates relaƟvely uniform byte value quanƟƟes, spacing, with the

minimal byte paƩerns which must exist staƟsƟcally as predicted by probability theory.

7

July 26, 2021 Version 5M

The Buildkey Program

Usage: buildkey < randomizaƟon file > < key-table file >

 Where: < randomizaƟon file > = Input file

 <key-table file > = Key-table output file to create

 OpƟons: /a <value> alpha key-table page count (1 to 255)

 /A <value> alpha element variaƟon (10 to 50)

 /de <value> debug output level (1 to 3)

 /h help

 /p <passwd> encrypt key-table w/ passwd (chars: 8-20)

 /q quiet mode - no banner out

/r <value> Random number seed value (0 to 9000000)

 /s Append suffix bytes at EOF

 /v <value> vector key-table page count (1 to 255)

Buildkey constructs a VectorLite key-table file. The program requires a “randomizaƟon” input file. This

randomizaƟon file may be of any type; however, output files produced by random are recommended. The

uƟlity program file-stats provides staƟsƟcs on a file’s suitability for use.

The randomizaƟon and key-table file-name arguments are required. OpƟons following are not.

Use of the “/r” opƟon is highly recommended, and suggested to always differ.

Buildkey randomly indexes into the “randomizaƟon file” to obtain random numbers.

Previously exisƟng key-table file-names are over-wriƩen without warning. Key-table files generated with the

same “randomizaƟon file” should be different upon each creaƟon, with intelligent use of the “/r” opƟon.

Best PracƟce:

Before using a “randomizaƟon file”, run the file-stats and histogram-bytes uƟlity programs to help

determine suitability.

8

July 26, 2021 Version 5M

The “/a” and /”v Alpha & Vector Page OpƟons

The “/a <n> ” and “/v <m> ” opƟons may be used to add addiƟonal alpha (/a) and vector (/v) key-tables. By

default, key-tables are constructed with 1 each. The encrypt program will randomly select addiƟonal key-

tables different from the 1st of each aŌer a minimum plain-text file size, if they exist.

The “/A” Alpha-VariaƟon OpƟon

Basic alpha key-tables contain 256 elements of each byte value – unless the “/A” opƟon is specified. “/A”
enables buildkey to randomly vary the quanƟty of each value +/- within the number range provided. This
provides many more alpha key-table possible permutaƟons. For example: If the number 20 is used – byte
quanƟƟes of any given value may vary from 236 to 276.

The “/de” Debug OpƟon

“/de <n>” sets the output developer debugging text verbosity level. Output is wriƩen to STDOUT.

The “/h” and “/q” Help / Quiet OpƟon s - Self Explanatory

The “/p” Password OpƟon

A key-table file may be password “protected” with “/p”. The string provided is used to crudely encrypt the
key-table file. It is not intended to protect the file’s content, but simply to confound searches for key-table
files based via the known VectorLite key-table file “MAGIC ID” prefix.

The “/r” Random Seed OpƟon

The “/r” opƟon causes the buildkey custom random number generator seed the C language rand () funcƟon
with value provided, rather than with the current system clock Ɵme.

The “/s” Suffix OpƟon

The “/s” opƟon appends a random quanƟty of “suffix” bytes at EOF, to disguise the content length. This
makes file system searches for a key-table file via a file’s fixed length more difficult.

Key-table files contain a Unix / Linux style MAGIC-ID byte string at beginning and file end. The VectorLite byte

sequence is 57-62-19-16.

9

July 26, 2021 Version 5M

The Encrypt Program

Usage: encrypt < plain-text file > < cipher-text file > < key-table file >

Where: < plain-text file > = Input file (p-text) to be encrypted

 < cipher-text file > = Output file (c-text) to create as output

 < key-table file > = VectorLite key-table file to be use

OpƟons: /de < value > debug output level (1 to 3)

 /h help

/kt < filename > enable key-table trace

 /p < string > key-table password (8-20 chars)

 /q quiet mode

/r < value > Random Number Seed (0 to 9000000)

/rt < filename > enable random number trace

/t < value > Number of concurrent threads (1 to 8)

Encrypt translates a plain-text input file to produce a cipher-text output file, using a VectorLite key-table file

as a secret key.

Previously exisƟng output cipher-text files will be over-wriƩen without warning. The key-table file supplied to

encrypt must be used by decrypt to re-create the plain-text file’s original content. Encrypt verifies use of

version 5M key-table files. Cipher-text output files have no idenƟficaƟon informaƟon contained within.

File names within brackets are required. Use of any opƟon is just that – none are required.

Incorrect syntax causes the usage informaƟon above to be displayed.

Encrypt creates as many threads are there are cores on the plaƞorm found, plus 1, by default (8 max).

10

July 26, 2021 Version 5M

The “/de” Debug OpƟon

“/de <n>” enables debug output and sets the verbosity. Debug files have the file-name root of the cipher-
text, one file per thread, with a “_en_x.txt” suffix and file type. “x” is the thread number. Debug files are
NOT merged upon compleƟon. “x” = “m” is for the main thread. “x” = 0 for the table of contents thread.

The “/h” and “/q” Help and Quiet O pƟons - Self Explanatory

The “/kt” Key Trace O pƟon

“/kt < file-name >“ enables the key-table trace output file. Fixed length binary records of each key-table cell
usage is wriƩen. There are one or more records per plain-text file byte. Trace files are temp wriƩen to the
cipher-text file-name root, with a “_x.kt” file-name suffix and type. “x” is the thread number. Temp files are
merged at the end and deleted. Key trace files may be analyzed with the key-trace uƟlity program.

The “/p” Password OpƟon

The password opƟon is used to provide the password string if the key-table file was constructed with “/p”.

The “/r” Random Seed OpƟon

“/r < value >” enables one to enter a random number seed value for the C library srand () call. If not
specified, encrypt will use the current system Ɵme as the seed value. An approximaƟon of the current system
Ɵme used is given away by the cipher-text file creaƟon date. Hence, use of this opƟon is recommended, with
variaƟon to not repeat. Encrypt uses random numbers to conƟnually vary the pre and post enciphering bias
arrays, false data generaƟon (which is enciphered), and the key-table self modificaƟon scrambling process.

The “/rt” Random Number Trace OpƟon

“/rt < file-name >” enables the random number use trace file output. One byte is wriƩen per random number
use. Trace files are temporarily wriƩen to the same file-name root of the output cipher-text, one file per
execuƟon threat, with a “_x.rt” file-name suffix and file type, where “x” is the thread number. At the end of
execuƟon, these files are merged to a final output file specified in the command line. The file-stats,
histogram-bytes , and check-paƩern-bytes uƟlity programs may provide insighƞul informaƟon aŌerwards.

The “/t” Thread Count OpƟonal

“/t < n >” is a developer opƟon to specify the number of threads to create for encrypƟon. Values from 1 to 8
are permiƩed, and is trimmed back to the number of plaƞorm cores if less. A main thread always runs 1st,
followed by <n> threads, and upon terminaƟon of all <n> threads – a final Table of Contents thread.

11

July 26, 2021 Version 5M

The Decrypt Program

Usage: decrypt <cipher-text file> <plain-text file> <key-table file>

 Where: <cipher-text file> = Input file-name of encrypted data

 <plain-text file> = Output file-name to create

 <key-table file> = Key-table file to use for decrypƟon

 OpƟons: /de <value> debug output level (1 or 2)

 /h help

 /p <passwd> key-table file passwd (chars: 8-20)

 /q quiet mode

Decrypt transforms a VectorLite created cipher-text file back to the original plain-text file contents, when

used with same key-table file the original was enciphered with. Previously exisƟng files are over-wriƩen

without warning. Decrypt verifies a version 5M key-table is specified. VectorLite cipher-text files contain no

idenƟficaƟon and hence there is no check for a valid cipher-text file as input. It is also not possible to

determine if the correct key-table file is specified. Garbage in → garbage out, as the saying goes. An

incorrect key-table file, or a file which is not a VectorLite cipher-text file may cause erraƟc program behavior.

The “/de” Debug O pƟon

 “/de < value >” enables developer debug output and sets the verbosity level. Debug files are created in the

same manner as with encrypt, but with the two characters of “de” replacing “en”.

The “/p” P assword O pƟon

This opƟon is required if the key-table file was password protected when created by buildkey.

The “/h” and “/q” Help and Quiet OpƟons - Are self-explanatory.

12

July 26, 2021 Version 5M

UƟlity Programs

Several uƟlity programs are included within the download zip file. They reside within the sub folders “test”

and “tools”. They are unverified work in progress programs.

The histogram-bytes program generates a histogram of the byte values within a file to the STDOUT. It is

useful to determine if a randomizaƟon file to the buildkey program contains a wide and equal distribuƟon of

byte values. It also provides informaƟon on input plain-text and output cipher-text files.

The key-summary, key-details, key-line-col, and key-dump programs display various aspects of a key-table

file. The author typically redirects the STDOUT to a text file to read with a text editor.

The key-trace program produces key-table file use history from an encrypt program execuƟon. The program

has three funcƟons, which may warrant separaƟon into 3 individual programs later. Histograms of key-table

cell usage, and byte values the various stages of encrypƟon may be displayed. ASCII histogram values may be

output to STDOUT as well, and binary histogram values can directed to an output file (so as to be input to

spreadsheet soŌware for charƟng).

The create-paƩern-file program is used to generate plain-text input files consisƟng of various repeƟƟve binary

byte values or ASCII string paƩerns of a specific size.

The compare-files program is used to compare decrypt program output files match the original plain-text files

enciphered by the encrypt program.

The check-paƩern-bytes-1 and check-paƩern-bytes-2 programs are used to determine the duplicate repeƟƟve

byte paƩerns with a file. The 1st program generates inclusive results, meaning a duplicate paƩern of 4 bytes

has also incremented the duplicate paƩern counts of 2 and 3. The 2nd program is exclusive and counts of only

the largest. The programs may not handle the end of file case perfectly for the last few checks.

The check-proximity program reports the average spacing distance between common byte values of a file.

The file-stats program reports the mean, standard deviaƟon, and coefficient of variance of the histogram of a

file’s byte values.

13

July 26, 2021 Version 5M

Basic EncrypƟon Algorythm

The VectorLite encrypt program transforms an input plain-text file into a randomized “displacement-domain”

cipher-text file of randomized values. Encrypt translates 1 byte at a Ɵme into the displacement / distance

value to an entry within a row or column who’s cell entry matches within a 2 dimensional 256 x 256 element

“alpha” key-table. The 1st matching value is used, should mulƟple exist. The “alpha” key-table is traversed in

the direcƟon (x,y) and (+, -) as determined by a parallel indexed and tracked a “vector” key-table. The (x,y)

coordinates of each are idenƟcal at all Ɵmes.

The encrypt program is much more complex than the basic method described above. Plain-text bytes are both

pre and post “biased” with singly used random number pools to eliminate or reduce input file paƩerns. Blocks

of zeroes and paƩerns are common with computer files. In addiƟon, input files such as text files make use of a

sub-set or unequal use of values from 0 to 255. The pre-bias eliminates these input stream problems. The

post-translaƟon bias eliminates a property of the displacement translaƟon to favor smaller values staƟsƟcally.

The encrypt program may not find a plain-text byte value searched for within the current row or column the

“alpha” key-table state is currently at (x,y wise). The miss rate is expected to be ~38 %. When not found,

encrypt searches a “re-vector flag” within the “vector” key-table within the current row or column, traversing

the same direcƟon as the failed plain-text byte search. The resulƟng “vector” table displacement is output to

the cipher text file (also aŌer post biasing + re-vector bias). Re-vector operaƟons are guaranteed to change

the searching direcƟon of the next “alpha” table scan so as to prevent looping. Encrypt starts the search

anew. With an observed 38 % miss rate, 10 consecuƟve misses become probable aŌer a certain input file size.

When such happens, a special “evasive maneuver” acƟon is taken to “jump” elsewhere to a random locaƟon

with the current row / column in a different direcƟon as well.

A random amount of encrypted false data is always inserƟng into the beginning and end of cipher-text files.

Input plain-text files beyond a small size will cause false encrypted random data to be inserted midway. The

larger the plain-text file – the larger the quanƟty and number of mid-stream inserƟons.

The “alpha” key-tables randomly self modify / scramble 4 kilo-byte segments of themselves once a minimal

plain-text file size is exceeded. The segment scrambled may start randomly from key-table starƟng table byte

0 to the end minus 4 Kbytes. Self modificaƟon does not cross “alpha” key-table “page” boundaries. A “page”

is an individual “alpha” 256 x 256 byte key-table (65,536 bytes, or 524,288 bits). There may be 256 of these.

Bias arrays start in known states from the buildkey key-table file. Each bias array element is used 1 Ɵme only.

Upon a random threshold near the array buffer pool end, the arrays are updated to a new set of values and a

different sequence.

5 addiƟon “vector” table flagged cells define acƟons to synchronize encrypt & decrypt. (1) Change “alpha”

page; (2) Change “vector” page; (3) Toggle false data on / off; (4) Alpha table self-mod; and (5) bias array

update. Each flag type is guaranteed 1 per row / column min, with the “revector” type at 2 min. More than 1

or 2 may exist as column guarantees are made aŌer 1 or 2 per row first.

14

July 26, 2021 Version 5M

Key-Table Structure(s)

VectorLite EncrypƟon Ver 5M uƟlizes a 2-dimensional “alpha” key-table, as illustrated in Figure 1. The

dimensions of the table are as wide as the range of possible data values to be encrypted at a Ɵme – 8 bits.

VectorLite 5M encrypts one 8 bit byte at a Ɵme, so the alpha key-tables are 256 x 256 in the (x,y) dimensions

(using Cartesian coordinates). The table element size (depth) matches the depth encrypted at a Ɵme: one

byte.

Figure 1 – Alpha Key-Table “Alpha” Elements

During buildkey program creaƟon, alpha key-tables are populated as follows:

First, a simple table of all possible values within a plain-text file (0 to 255) are placed into the table in equal

quanƟƟes - 256. Like values are set +1 column per row, to ensure each row and column has every value.

Next, the equal populaƟon of 256 values is modified if the “/A” opƟon was specified. The value following the

“/A” opƟon is the quanƟty range each value may randomly vary +/- from 256. A final adjustment to a few

value quanƟƟes is performed at the end to compensate for any +/- accumulaƟons.

Next and final is a series of random table scrambles, exchanging elements 0 to 65,535 sequenƟally with a

randomly indexed element at some other table locaƟon. This is repeated a large random number of Ɵmes.

AŌer scrambling, the alpha key-table is wriƩen to an output file. When mulƟple alpha key-tables are

specified via “/a” – the process repeats 1 to 254 Ɵmes. When the table count is 256, the resultant key-tables

are like a 3-dim key-table, but performance is beƩer using 1 table (x,y) plain at a Ɵme.

15

July 26, 2021 Version 5M

Figure 2 illustrates a porƟon of a “vector” (aka “aƩribute”) key-table. The table is of the same dimensions and

depth as the alpha key-table.

Figure 2, Vector Key-Table “vectors”

A “vector” table contains the next value alpha table search direcƟonal guidance (i.e. vectors, hence the name),

and flag bits. Flags synchronize encrypt and decrypt acƟons: such as “re-vectoring” when an alpha search

fails; or changing the acƟve key-table page number. Figure 2 shows only the “vectors”.

Two dimension tables have four possible traverses, and the soŌware uses literals represenƟng N, E, S, & W for

simplicity. These literal values of 0 to 3 consume the 2 LSBs of every table element byte.

Version 5M defines 6 bit flags from the remaining MSB bits. They are: “ReVector”, “False Data On / Off

Toggle”, “Self-Mod”, “A-Page”, “V-Page”, and “Bias Array Update”. Only one flag bit may be defined per

table element. The corresponding (x,y) “alpha” element of a flagged “vector” table cell is ineligible as a

displacement translaƟon result. Landing on a flagged “vector table” cell always indicates an acƟon.

ConstrucƟon of a “vector” key-table is performed by populaƟng the table with an ordered known set of values

0 to 3 sequenƟally. The table is then randomized by scrambling the enƟre table a large number of Ɵmes.

Flags are inserted aŌer the vector direcƟon element values are scrambled. Flags have a requirement to be

present with each row & column and cannot be randomly scrambled and missing. Flagged cells make ~3 % the

alpha table entries ineligible for use.

16

July 26, 2021 Version 5M

Key-Table Files

Vectorlite EncrypƟon enciphers plain-text files one 8-bit byte at a Ɵme. Basically, a plain-text input value is

translated to the distance value where the input is found within “alpha” key-table. Plain-text bytes are biased

before the search to eliminate paƩerns and staƟsƟcally equalize the values search for. The displacement

results are also biased to eliminate 1st found value favoriƟsm.

Key-File contents and structure:

1 File Header 8 bytes to idenƟfy VectorLite file type, version, sub-version

2 A Tables Alpha key-tables, quanƟty 1 to 256, each at 64 KB size

3 V Tables Vector key-tables, quanƟty 1 to 256, each at 64 KB size

4 A Bias Array Alpha bias array of 1024 random bytes values

5 D Bias Array Displacement bias array of 1024 random bytes value

6 R Bias Array Re-Vector bias array of 1024 random bytes values

7 Suffix Bytes OpƟonal, a random number of random bytes to deceive file size based searches

8 File Header 8 bytes same as (1), but at EOF used to verify correct password unlocking

Key-table files may vary in size from approximately 132 kilo-bytes to 32 mega-bytes, dependent upon the

number of alpha and vector tables. At the maximum , there are 256 of each for a 512 total. The maximum

size approximates the disfavored 3-D table VectorLite version 6 demo release. 3-D tables are not cache or

memory bandwidth PC or server friendly, but 2-D table plains are with today’s CPU cache sizes.

The acƟve Alpha and Vector table pages, should more than 1 exist, maintaining common key index locaƟons

relaƟve to the start of each. In other words, the (x, y) coordinate locaƟon for acƟve “alpha” page is always

idenƟcal to the (x, y) coordinate of the acƟve “vector” page. The relaƟve page numbers acƟve will vary.

Password protected key-table files generated with the “/p” opƟon are verified by encrypt and decrypt via the

proper file header ID and soŌware version numbers at the start and end of file.

When encrypt finds mulƟple “alpha” or “vector” pages within a key-table file, “alpha” and “vector” key-tables

are “paged” at different random thresholds. An input plain-text file need be sufficient minimal size to warrant

a change. The “alpha” and “vector” acƟve page table numbers oŌen differ. Encrypt signals these changes to

decrypt by purposely landing on either an A-page or V-page flagged “vector” key-table cell. The page to

switch into is the placed into the cipher-text immediately aŌerwards, and post-biased so as to randomize it’s

file value and hence weakly encrypt it.

SynchronizaƟon between encrypt and decrypt is maintained via purposely landing on flagged “vector” key-

table cells throughout the enƟre encrypƟon process, when special acƟons are desired. The placement of

“sign-post” values for these special acƟons is eliminated by using this process. The values to use in the special

acƟons are within the cipher-text, but are post-biased to weakly encrypt and randomize them all – hidden in

plain sight among the true and false encrypted plain-text → cipher-text data.

17

July 26, 2021 Version 5M

EncrypƟon Method / Algorithm

The Basic Encrypt Program Algorithm

1 Unlock key-table file if password protected, and verify the file was constructed via buildkey current version

2 Read all “alpha” and “vector” Key-Tables into program memory (1 to 256 of each).

Set key-tables to the first page of each to start (Page 0 in the C language).

3 Read the 3 bias arrays of 1,024 random numbers each, from the key-table file (A, D, and R bias arrays).

4 Set the first key-table traversing “DirecƟon Vector” to that of the vector table origin [0,0].

5 Read the first or next 8-bit byte of the input plain-text file (version 5M buffers up to 100k)

6 Change the value of the plain-text byte using the alpha bias array value at the current index, and increment the

index. This create the “alpha” key-table search value. The operaƟon is (PT + A-Bias) % 256.

7 Search the “alpha key-table,” in the direcƟon of (4), for the value of calculated (6).

8 If (7) is unsuccessful at locaƟng (6) – search for 1st Re-Vector flag cell in direcƟon (4). Apply R and D bias to the

returned value with math as (6). Output result into the cipher-text file. Repeat steps (7) – (8) a max of 10 Ɵmes

if not found conƟnues on. If 10th not found occurs - execuƟng an evasive “jump” by placing a binary 0 + a jump

value distance to randomly change “alpha” / “vector” table (x,y) . Re-start steps (7) and (8) anew.

9 If step (6) was successful, apply a D bias to the distance value returned from the “alpha” table search, and

output the cipher-text value. Increment the D bias array index.

10 Update the new “vector direcƟon” to the “vector” key-table cell value (9).

11 Update the key-table indexes for the acƟve “alpha” and “vector” key-tables to the locaƟon (9)

12 < rinse and repeat – i.e. go to (5) –> (unƟl plain-text file EOF is reached)

Crossing key-table row or column edge boundaries uses circular wrap-around: (255 + 1 = 0), and (0 – 1 = 255).

The alpha search probable miss rate is 38 % and consequently cipher-text files typically >= 60 % in size due to

consecuƟve misses in (8). The probability of consecuƟve alpha search misses is 0.38 ** N. The ineligible flagged vector

cell alpha table elements contribute ~ 3 % to the miss rate – less than 10% of the total misses.

18

July 26, 2021 Version 5M

DeviaƟons From The Basic Encrypt Steps:

Encrypted false data is inserted at the beginning and end of every file. The quanƟty of false data is random and

proporƟonal to the plain-text input file size. When the plain-text file size crosses various thresholds, addiƟonal

randomly placed and larger randomized quanƟƟes are placed mid way in batches. The larger the file the larger the

number of inserƟons and the larger the quanƟty – up to a reasonable maximum.

False data start and end points are signaled from encrypt to decrypt by inserƟon of the biased distance to a “false data”

flag in the “vector” key-table. These flags are on / off toggles.

Key-table displacement values of zero (0) are not permiƩed. When pre-biased input plain-text creates consecuƟve

idenƟcal values, use of the current (x,y) locaƟon in the “alpha” table is not permiƩed. A new locaƟon must be found.

Cipher-text files will not contain zeroes, except under the circumstance of a ReVector deadlock jump, in step (8) aŌer 10

unsuccessful search aƩempts.

Before an aƩempt is made to to encrypt a false or plain-text data item, thresholds are checked to determine if a Ɵme a

special acƟon – such as bias array update, key-table self-mod, or table page change.

MulƟ-Threading

Version 5M encrypt and decrypt is multi threaded. There is a main program to prepare the encrypƟon threads,

followed upon compleƟon by a Table-Of-Contents (TOC) thread, followed by the main program’s assembly of the final

cipher-text file from individual cipher-text temp-files created.

A TOC segment resides at near the start of cipher-text files. The segment begins with a random quanƟty of enciphered

false data before the true TOC biased data is encountered. Each thread cipher-text segment begins with different

randomized quanƟƟes and values of encrypted false data, and ends similarly. Each thread segment also inserts

enciphered biased false data mid stream in proporƟon to segment plain-text input size assigned by the main program.

MulƟ threads are created if the plain-text input file size warrants their creaƟon for a performance gain. Plain-text input

files are divided approximately in equal size but with a randomized variance.

A 4 core, 8 thread Intel I-7 4700 cpu has thread performance gains significant up to 3 or 4 cores, with diminishing returns

there aŌer. The number of encrypƟon threads is bounded by the core count found on the CPU and a current upper limit

of 8 for demonstraƟon purposes. The desktop PC used to develop the soŌware observes decreasing marginal gain aŌer

3 threads, likely due to home desktop memory bandwidth limits. Servers likely will have a higher performance yield.

Future Thread Enabled Features

MulƟple threads create independent self contained thread cipher-text files. These files can be independently

deciphered in a self contained manner. This enables two desirable potenƟal future features to be added:

1. Transmission of cipher-text segments via disƟnct communicaƟon channels, reducing whole file intercepƟon

2. Randomized scrambling / interleaving of the independent segment transmissions, reducing segment intercepƟon.

19

July 26, 2021 Version 5M

The Basic Decrypt Program Algorithm

Deciphering the Cipher-Text back into original Plain-Text requires the same key-table file used by encrypt.

The cipher-text file is processed 1 byte sequenƟally at a Ɵme, using an I/O buffer up to 100 KB

1 Read in Key Tables and bias arrays from the key-table file into program memory

2 Set the current table traversing “DirecƟon Vector” to the Vector Table origin [0,0].

3 Read the first or next 8-bit byte value of cipher-text from the input file.

4 Compensate for the D-bias of the input byte. Increment the D bias array index.

5 Traverse the alpha and vector key-tables by the value (4) in the direcƟon of (2)

6 Check for a < revector or other flag > within vector table - if flagged, handle the special operaƟon cases:

6.a If a re-vector flag, update key-index by R bias

6.b If a bias flag, read the update values from cipher-text and update the arrays

6.c If and alpha or vector key-table page change, read new page value update page number

6.d If a false flag, toggle false data processing from prior state

6.e If a self-mod flag, read the update parameter update the 4 KB alpha key-table segment.

7 If (6) is not a flagged cell , reverse the pre-bias. Increment the alpha key-table index.

8 If false data toggle state is ON – ignore (7) result. If false data state is OFF – pwrite (7) to output file.

9 Set next key-table traverse direcƟon to new “vector” key-table value at new index.

10 If EOF - <close file>; else - if not EOF <goto 3>

20

July 26, 2021 Version 5M

Notes and Comments

Key-table Sizes: The key-tables are large for an encrypƟon system, but with today’s large secondary storage

capaciƟes, solid state disk drives, and computer main memory sizes , complaints of this should be mute. On

an industrial scale, key-table libraries or vaults would be larger, but storage is massive conƟnues to grow.

Cipher-Text File Sizes: The same argument is made concerning the minimum 60 % cipher-text file size

expansion above the plain-text input file size.

Secret Key Type: The encrypƟon implements symmetric keys. InvesƟgaƟon into an asymmetric

implementaƟon or enhancement is taking place - Ɵme permiƫng. InvesƟgaƟon into use within protocols like

SSH is underway.

Nested EncrypƟon / DecrypƟon: mulƟple pass encrypƟon via the same or different key-files tests successfully.

AddiƟonal encrypƟon passes causes the 60 % file size expansion each. Key-files must be used in reverse order

during the decrypƟon if different.

Encryption Method: The basic enciphering is primiƟve in complexity compared to those using polynomials and

complex mathemaƟcal algorithms. The end goal is protecƟon of the data, not status in the complexity to do

so. VectorLite aƩempts overwhelm brute force or staƟsƟcal analysis with massive possible key-tables

permutaƟons, and aƩempts to ensure every aspect of the process is randomized. This simple method was not

pracƟcal unƟl modern small computers became common place with sufficient memory and cache 15 years

prior.

Hardware: Computer CPUs & ALUs do need nor require the recent AES addiƟons. KISS.

Working as Desired: The encrypt “key-trace” opƟon generates a key-table usage log during the encrypt

program execuƟon. The files provide a history of plain-text, biased plain-text alpha table search values, alpha

search displacement results, final biased cipher-text values, key-table page and indexes used, in addiƟon to a

few more items. Data from analysis of these files appears to indicate VectorLite uses the key-tables in the

desired staƟsƟcal random manner and does not favor individual cells. A bell shaped use curve is observed that

flaƩens as larger plain-text files are encrypted.

Cipher-Text – Prior Version PaƩern RecogniƟon: The use of the 3 bias arrays starƟng in version 5L appears to

have virtually eliminated the minor cipher-text duplicate byte sequence paƩerns detected in prior versions

above which probability theory states should exist.

Cipher-Text Value PaƩern Probability DistribuƟons: Significant effort has been made to create the nearly

100% random cipher-text results from any plain-text input file type. Test results are published at the end of

this document. Specific goals were to “flaƩen the cipher-text output value quanƟƟes” staƟsƟcally and

eliminate duplicated byte value paƩerns above the minimal due to random chance. The average distance

between like byte values also appears to be successfully randomized staƟsƟcally.

Hence, the tesƟng results thus far indicate near best case pure random output may have been achieved.

21

July 26, 2021 Version 5M

Of Sign Posts & Sign Post Values: The encrypƟon process technically uses what can be categorized as “sign-

posts” to signal special acƟons and synchronize to decrypƟon. Both sign-post indicators, and sign-post values

exist. Sign-Post indicators are NOT wriƩen into cipher-text; they are signaled encrypt to decrypt by landing on

falgged “vector” key-table cells. Biased sign-post values are wriƩen into the cipher-text immediately

following the landing on a special flag cell for 4 special acƟons:

 Item Flag type / Purpose Bytes Value Range Purpose in Encrypt / Decrypt

1 Alpha Key-Table Self ModificaƟon 1 rand 0 to 255 Used in scrambling algorithm

2 Bias Array Updates: 3 rand 0 to 255 Value changes & scrambling

3 Alpha Key-table page change 1 rand 0 to 255 Page change value

4 Vector Key-table page change 1 rand 0 to 255 Page change value

Sign-post values are randomized (in most cases within bounds) and biased – making detecƟon challenging.

Buildkey “/A” Alpha-Variability: This opƟon to vary the count / quanƟty of each value in the alpha key-table

could be expanded upon to include variants for ASCII / UTF text document character sets to more heavily favor

alpha-numeric & punctuaƟon character set byte values, language. A future version may implement this if

invesƟgaƟon into the subject warrants the effort.

Random Number Usage: Obtaining truly random number sequences for any computer program is problemaƟc

without specialized hardware. The C language run-Ɵme library rand() funcƟon is notoriously weak,

implemented as pseudo-random. Sequences are idenƟcal when seeded the same value, and a database of

some type consisƟng of all possible sequences may actually exist somewhee.

Hence, a custom “get_rand ()” funcƟon was created to introduce addiƟonal complexity and randomness into

the buildkey and encrypt programs. The random program was created to further break library dependence.

Duplicate FuncƟons Among Programs: No aƩempt was made to generate a link library of common funcƟons

or procedures between different programs. ConfiguraƟon management has not been a development issue.

Coding Style: Simplicity and readability is took precedence over any source code brevity or opƟmizaƟon.

BeƩer the compiler opƟmize performance than someone go bald. White space is cheap, while people’s Ɵme is

priceless.

22

