
VectorLite Encryp on

Version 5M

 User’s Manual

July 26, 2021 Version 5M

Warning

This so ware is provided for algorithmic proof of concept tes ng and demonstra on use only.

This so ware should not to be used to protect files of value or need.

It is recommended to contain the so ware within an independent folder or directory separate from useful

valuable files. Test files should be copied into a test folder – leaving original files in place. Plain-text test files

are provided, in addi on to a program to create test pa erned files.

No W arranty or G uarantee is E xpressed or I mplied .

VectorLite Encryp on has not been peer reviewed. Please test / demonstrate with cau on. Version 5M

tes ng has improved, but bugs may / likely exist.

Export Restric ons

The so ware and executable programs may be subject to United States export regula on. Please comply with

all regulatory laws and governance.

Version 5M Document Revision History

July 28, 2021 Ini al Release

Addi ons to this document will be made as me permits.

Author

Robert J. Miller

E-Mail: robtjmiller4249@gmail.com

 bob@secretware.org

2

July 26, 2021 Version 5M

Notes

This document is intended for all users, including the pa ent technically advanced

Version 5M

Version 5M is a substan al upgrade, with emphasis upon:

1. Mul threaded performance for the encrypt and decrypt programs

2. Improved I/O performance, buffering input / output up to 100,000 bytes at a me

3. Elimina on / simplifica on of command line op ons no longer relevant

4. A new random program to be er handle C run- me library pseudo-random issues

5. Numerous clean-ups, bug fixes, and so forth.

6. The inclusion of two new analy cal u lity programs.

a) file-stats Display mean, std dev, and co-var (cv) of a file’s histogram of byte values

b) check-proximity Display histogram of average distance between common byte values

Known Limita ons

1. Plain-text file sizes are limited by the standard 32 bit C library I/O func ons. The maximum plain-text

input file size to encrypt is approximately 1.2 giga-bytes, and is actually limited by the larger output

cipher-text file which must later be read as input by decrypt. Cipher-text files are typically 60 % larger

than the plain-text input file size. A later release may implement the 64 bit IO to remove this limit.

2. Several counters and index variables may also be 32 bit limited at this me.

Known Risks

1. file-stats displays a file’s byte value sta s cs based on the histogram, not the individual bytes.

Determina on if the two computa ons result in the same or different results will be performed soon.

The intended purposed of file-stats is to determine input file suitability to random – that is all.

2. So ware generated random numbers will always be an issue – the new random program lessons the C

language run- me library’s srand and rand func ons predictability. This is by introducing an addi onal

unknown (random’s input file), and mul ple human provided random seed values spread across a wide

range of accepted values (in place of pla orm clock me).

3

July 26, 2021 Version 5M

V ersion 5 L (October 2020)

For tes ng and development:

1 encrypt A key-table usage trace-file output op on with command line specified filename

2 encrypt A random number usage trace-file output op on, also with cmd line filename

3 key-trace A program to analyze the results of the encrypt program’s key usage trace file

4 key-line-col A program to display a key-table page’s line and row values

For Be er Encryp on:

1 The addi on of an “Alpha Bias Array” of 1024 random values to pre-modify plain-text

2 The addi on of a “Displacement Bias Array” of 1024 random values to post modify traverse results

3 The addi on of a “Re-Vector Bias Array” of 1024 random values to post modify re-vector key x, y.

These three new bias arrays are ini ally populated and included within the buildkey key-table output files.

The arrays are subsequently modified during run- me as the encryp on / decryp on takes place, never using

the same entry twice. The arrays are updated at random (non repea ng) points near buffer exhaus on, each

differently. The encrypt and decrypt programs track and update the arrays in the same manner via a method

described later.

U lity Programs:

1 key-summary Quickly display 1st key-table page’s alpha and vector table’s proper es

2 key-details More detail than key-summary

3 key-dump Even more detail than key-details – each value dumped out

4 key-line-col Display an individual line and column key-table page’s data values

5 key-Trace Histogram and detailed info on key-table traversing history and usage

6 compare-files Compare two files, providing info on 1st point of variance, if diff

7 check-pa ern-bytes-1 Counts repe ve pa erns of bytes within a file, inclusive counts

8 check-pa ern-bytes-2 Counts repe ve pa erns of bytes within a file, exclusive counts

9 histogram-bytes Output a histogram of byte values within a file

10 create-file Create a file of repe ve binary values or character strings

The u lity programs have not been peer reviewed and validated. The programs are the author’s best

a empts given me available to work on them.

4

July 26, 2021 Version 5M

Introduc on

The VectorLite Encryp on so ware provides three basic programs: “buildkey”, “encrypt”, & “decrypt”.

Version 5M introduces “random” to assist in crea on of a “randomiza on file” for use with buildkey.

The buildkey program generates a key-table file, which is used by the encrypt and decrypt programs to

encipher and decipher files.

The encryp on and decryp on end points require possession of the same key-table file. It is a symmetrical

cryptography system.

The cipher-text files typically expand from the plain-text file’s size by 60 % or more. Cipher-text files include

enciphered false data at the beginning, end, and various points in between. Key-tables randomly self modify

during execu on when a plain-text file exceeds a minimum size.

The key-table files are rather large for a modern-day cryptographic system – the minimum size is about 132

kilo-bytes (1 mega-bits). Key tables files may include a maximum of 512 “pages”, for a maximum crypto-key

file size of 33 mega-bytes (268 mega-bits).

As with any other so ware, modest intelligent usage would be required for the system to be secure.

VectorLite makes li le a empt to secure the key-table files on the host pla orms. Responsibility to do so is

le up the end-user, and beyond current scope.

5

July 26, 2021 Version 5M

Typical Usage

The VectorLite so ware package includes three (3) programs for normal opera on: buildkey, encrypt, &

decrypt. Use of the random program is recommended, but op onal. All programs are provided in shell /

command-line versions without a GUI interface. The general command line syntax of each is:

prompt> random <input file> <output randomiza on file>

prompt> buildkey <randomiza on file> <key-table file>

prompt> encrypt <plain-text file> <cipher-text file> <key-table file>

prompt> decrypt <cipher-text file> <plain-text file> <key-table file>

All files within the brackets are required. Several non-required command line op ons exist for each program.

For tes ng, the following file name and type conven ons are recommended:

1 Randomiza on file type “.ran”

2 Key-table file type “.vec”

3 Plain-text file type “.ptext”

4 Cipher-text file type “.ctext”

5 Decrypted files < original file type, but NOT the file name >

File names beginning with “test” are suggested:

prompt > random lake.jpg test-1.ran

prompt > buildkey test-1.ran test-1.vec

prompt> encrypt lake.jpg test-1.ctext test-1.vec

prompt> decrypt test-1.ctext test-1.jpg test-1.vec (note use of the original file type)

The sequence above preserves the original file by not over-wri ng it later via decrypt. The common file-name

of “test-1” relates files together. JPG files are convenient for tes ng, as are MP3 (or other format) music files.

When folder contents are displayed in Windows File Explorer, with the preview op on enabled, – the JPG file’s

preview image quickly verifies a correct encrypt → decrypt cycle, or alterna vely displays an interes ng and

very no ceable preview image corrup on in the event ot an error that needs inves ga on.

The files “test-1.ran” and “test-1.vec” would necessarily be secured and protected as secret keys in the real

world. It may be wise to secure the file lake.jpg, or not make it known as the source of input to random.

Files may be encrypted with mul ple passes of encrypt using the same or different key-table files. The inverse

of this process must be performed with the decrypt program, using key-table files in reverse order if different.

6

July 26, 2021 Version 5M

The Random Program

Usage: random < variable byte file > < randomized byte file >

 Where: < variable byte file > = File to extract randomized byte values from

 < randomized byte file > = Output file of randomized values 0 to 255.

 Op ons: /h help

 /q quiet mode

The random program generates a file of randomized bytes, based upon an extrac on of byte values from the
input “variable byte file”, and subsequently scrambling them. The resultant output file o en appears to make
a more suitable file for input to the buildkey program.

The input file may by any type of file which meets 3 minimum qualifica ons:

(1) The file must contain at least 225 of the 256 byte values from 0 to 255

(2) The byte value quan es coefficient variable (cv) must be 0.5 or less

(3) The file must be 10,000 bytes or larger.

An input file size greater than 100,000 bytes is recommended. The output file of randomized values is

currently hard fixed at 100,000 bytes. This may change in the future. The author uses JPG files for tes ng.

A er the input file qualifica ons are checked, random will ask for a minimum of 5 integer values to use as

independent seeds to the C language run me library srand() func on. A maximum of 200 values may be

input. An input value of zero (0) terminates the input.

The algorithm used to generate the random numbers scans the input file randomly to obtain one byte at a

me, slowing increasing the limit of common byte values obtained. The number of common values allowed

to accumulate increases with subsequent randomized passes through.

The first integer input seeds the srand () library call to obtain random indexes to scan the input file. All

subsequent integers re-seed srand () to scramble the byte’s order they were obtained in.

Preliminary analysis of the output files indicates rela vely uniform byte value quan es, spacing, with the

minimal byte pa erns which must exist sta s cally as predicted by probability theory.

7

July 26, 2021 Version 5M

The Buildkey Program

Usage: buildkey < randomiza on file > < key-table file >

 Where: < randomiza on file > = Input file

 <key-table file > = Key-table output file to create

 Op ons: /a <value> alpha key-table page count (1 to 255)

 /A <value> alpha element varia on (10 to 50)

 /de <value> debug output level (1 to 3)

 /h help

 /p <passwd> encrypt key-table w/ passwd (chars: 8-20)

 /q quiet mode - no banner out

/r <value> Random number seed value (0 to 9000000)

 /s Append suffix bytes at EOF

 /v <value> vector key-table page count (1 to 255)

Buildkey constructs a VectorLite key-table file. The program requires a “randomiza on” input file. This

randomiza on file may be of any type; however, output files produced by random are recommended. The

u lity program file-stats provides sta s cs on a file’s suitability for use.

The randomiza on and key-table file-name arguments are required. Op ons following are not.

Use of the “/r” op on is highly recommended, and suggested to always differ.

Buildkey randomly indexes into the “randomiza on file” to obtain random numbers.

Previously exis ng key-table file-names are over-wri en without warning. Key-table files generated with the

same “randomiza on file” should be different upon each crea on, with intelligent use of the “/r” op on.

Best Prac ce:

Before using a “randomiza on file”, run the file-stats and histogram-bytes u lity programs to help

determine suitability.

8

July 26, 2021 Version 5M

The “/a” and /”v Alpha & Vector Page Op ons

The “/a <n> ” and “/v <m> ” op ons may be used to add addi onal alpha (/a) and vector (/v) key-tables. By

default, key-tables are constructed with 1 each. The encrypt program will randomly select addi onal key-

tables different from the 1st of each a er a minimum plain-text file size, if they exist.

The “/A” Alpha-Varia on Op on

Basic alpha key-tables contain 256 elements of each byte value – unless the “/A” op on is specified. “/A”
enables buildkey to randomly vary the quan ty of each value +/- within the number range provided. This
provides many more alpha key-table possible permuta ons. For example: If the number 20 is used – byte
quan es of any given value may vary from 236 to 276.

The “/de” Debug Op on

“/de <n>” sets the output developer debugging text verbosity level. Output is wri en to STDOUT.

The “/h” and “/q” Help / Quiet Op on s - Self Explanatory

The “/p” Password Op on

A key-table file may be password “protected” with “/p”. The string provided is used to crudely encrypt the
key-table file. It is not intended to protect the file’s content, but simply to confound searches for key-table
files based via the known VectorLite key-table file “MAGIC ID” prefix.

The “/r” Random Seed Op on

The “/r” op on causes the buildkey custom random number generator seed the C language rand () func on
with value provided, rather than with the current system clock me.

The “/s” Suffix Op on

The “/s” op on appends a random quan ty of “suffix” bytes at EOF, to disguise the content length. This
makes file system searches for a key-table file via a file’s fixed length more difficult.

Key-table files contain a Unix / Linux style MAGIC-ID byte string at beginning and file end. The VectorLite byte

sequence is 57-62-19-16.

9

July 26, 2021 Version 5M

The Encrypt Program

Usage: encrypt < plain-text file > < cipher-text file > < key-table file >

Where: < plain-text file > = Input file (p-text) to be encrypted

 < cipher-text file > = Output file (c-text) to create as output

 < key-table file > = VectorLite key-table file to be use

Op ons: /de < value > debug output level (1 to 3)

 /h help

/kt < filename > enable key-table trace

 /p < string > key-table password (8-20 chars)

 /q quiet mode

/r < value > Random Number Seed (0 to 9000000)

/rt < filename > enable random number trace

/t < value > Number of concurrent threads (1 to 8)

Encrypt translates a plain-text input file to produce a cipher-text output file, using a VectorLite key-table file

as a secret key.

Previously exis ng output cipher-text files will be over-wri en without warning. The key-table file supplied to

encrypt must be used by decrypt to re-create the plain-text file’s original content. Encrypt verifies use of

version 5M key-table files. Cipher-text output files have no iden fica on informa on contained within.

File names within brackets are required. Use of any op on is just that – none are required.

Incorrect syntax causes the usage informa on above to be displayed.

Encrypt creates as many threads are there are cores on the pla orm found, plus 1, by default (8 max).

10

July 26, 2021 Version 5M

The “/de” Debug Op on

“/de <n>” enables debug output and sets the verbosity. Debug files have the file-name root of the cipher-
text, one file per thread, with a “_en_x.txt” suffix and file type. “x” is the thread number. Debug files are
NOT merged upon comple on. “x” = “m” is for the main thread. “x” = 0 for the table of contents thread.

The “/h” and “/q” Help and Quiet O p ons - Self Explanatory

The “/kt” Key Trace O p on

“/kt < file-name >“ enables the key-table trace output file. Fixed length binary records of each key-table cell
usage is wri en. There are one or more records per plain-text file byte. Trace files are temp wri en to the
cipher-text file-name root, with a “_x.kt” file-name suffix and type. “x” is the thread number. Temp files are
merged at the end and deleted. Key trace files may be analyzed with the key-trace u lity program.

The “/p” Password Op on

The password op on is used to provide the password string if the key-table file was constructed with “/p”.

The “/r” Random Seed Op on

“/r < value >” enables one to enter a random number seed value for the C library srand () call. If not
specified, encrypt will use the current system me as the seed value. An approxima on of the current system

me used is given away by the cipher-text file crea on date. Hence, use of this op on is recommended, with
varia on to not repeat. Encrypt uses random numbers to con nually vary the pre and post enciphering bias
arrays, false data genera on (which is enciphered), and the key-table self modifica on scrambling process.

The “/rt” Random Number Trace Op on

“/rt < file-name >” enables the random number use trace file output. One byte is wri en per random number
use. Trace files are temporarily wri en to the same file-name root of the output cipher-text, one file per
execu on threat, with a “_x.rt” file-name suffix and file type, where “x” is the thread number. At the end of
execu on, these files are merged to a final output file specified in the command line. The file-stats,
histogram-bytes , and check-pa ern-bytes u lity programs may provide insigh ul informa on a erwards.

The “/t” Thread Count Op onal

“/t < n >” is a developer op on to specify the number of threads to create for encryp on. Values from 1 to 8
are permi ed, and is trimmed back to the number of pla orm cores if less. A main thread always runs 1st,
followed by <n> threads, and upon termina on of all <n> threads – a final Table of Contents thread.

11

July 26, 2021 Version 5M

The Decrypt Program

Usage: decrypt <cipher-text file> <plain-text file> <key-table file>

 Where: <cipher-text file> = Input file-name of encrypted data

 <plain-text file> = Output file-name to create

 <key-table file> = Key-table file to use for decryp on

 Op ons: /de <value> debug output level (1 or 2)

 /h help

 /p <passwd> key-table file passwd (chars: 8-20)

 /q quiet mode

Decrypt transforms a VectorLite created cipher-text file back to the original plain-text file contents, when

used with same key-table file the original was enciphered with. Previously exis ng files are over-wri en

without warning. Decrypt verifies a version 5M key-table is specified. VectorLite cipher-text files contain no

iden fica on and hence there is no check for a valid cipher-text file as input. It is also not possible to

determine if the correct key-table file is specified. Garbage in → garbage out, as the saying goes. An

incorrect key-table file, or a file which is not a VectorLite cipher-text file may cause erra c program behavior.

The “/de” Debug O p on

 “/de < value >” enables developer debug output and sets the verbosity level. Debug files are created in the

same manner as with encrypt, but with the two characters of “de” replacing “en”.

The “/p” P assword O p on

This op on is required if the key-table file was password protected when created by buildkey.

The “/h” and “/q” Help and Quiet Op ons - Are self-explanatory.

12

July 26, 2021 Version 5M

U lity Programs

Several u lity programs are included within the download zip file. They reside within the sub folders “test”

and “tools”. They are unverified work in progress programs.

The histogram-bytes program generates a histogram of the byte values within a file to the STDOUT. It is

useful to determine if a randomiza on file to the buildkey program contains a wide and equal distribu on of

byte values. It also provides informa on on input plain-text and output cipher-text files.

The key-summary, key-details, key-line-col, and key-dump programs display various aspects of a key-table

file. The author typically redirects the STDOUT to a text file to read with a text editor.

The key-trace program produces key-table file use history from an encrypt program execu on. The program

has three func ons, which may warrant separa on into 3 individual programs later. Histograms of key-table

cell usage, and byte values the various stages of encryp on may be displayed. ASCII histogram values may be

output to STDOUT as well, and binary histogram values can directed to an output file (so as to be input to

spreadsheet so ware for char ng).

The create-pa ern-file program is used to generate plain-text input files consis ng of various repe ve binary

byte values or ASCII string pa erns of a specific size.

The compare-files program is used to compare decrypt program output files match the original plain-text files

enciphered by the encrypt program.

The check-pa ern-bytes-1 and check-pa ern-bytes-2 programs are used to determine the duplicate repe ve

byte pa erns with a file. The 1st program generates inclusive results, meaning a duplicate pa ern of 4 bytes

has also incremented the duplicate pa ern counts of 2 and 3. The 2nd program is exclusive and counts of only

the largest. The programs may not handle the end of file case perfectly for the last few checks.

The check-proximity program reports the average spacing distance between common byte values of a file.

The file-stats program reports the mean, standard devia on, and coefficient of variance of the histogram of a

file’s byte values.

13

July 26, 2021 Version 5M

Basic Encryp on Algorythm

The VectorLite encrypt program transforms an input plain-text file into a randomized “displacement-domain”

cipher-text file of randomized values. Encrypt translates 1 byte at a me into the displacement / distance

value to an entry within a row or column who’s cell entry matches within a 2 dimensional 256 x 256 element

“alpha” key-table. The 1st matching value is used, should mul ple exist. The “alpha” key-table is traversed in

the direc on (x,y) and (+, -) as determined by a parallel indexed and tracked a “vector” key-table. The (x,y)

coordinates of each are iden cal at all mes.

The encrypt program is much more complex than the basic method described above. Plain-text bytes are both

pre and post “biased” with singly used random number pools to eliminate or reduce input file pa erns. Blocks

of zeroes and pa erns are common with computer files. In addi on, input files such as text files make use of a

sub-set or unequal use of values from 0 to 255. The pre-bias eliminates these input stream problems. The

post-transla on bias eliminates a property of the displacement transla on to favor smaller values sta s cally.

The encrypt program may not find a plain-text byte value searched for within the current row or column the

“alpha” key-table state is currently at (x,y wise). The miss rate is expected to be ~38 %. When not found,

encrypt searches a “re-vector flag” within the “vector” key-table within the current row or column, traversing

the same direc on as the failed plain-text byte search. The resul ng “vector” table displacement is output to

the cipher text file (also a er post biasing + re-vector bias). Re-vector opera ons are guaranteed to change

the searching direc on of the next “alpha” table scan so as to prevent looping. Encrypt starts the search

anew. With an observed 38 % miss rate, 10 consecu ve misses become probable a er a certain input file size.

When such happens, a special “evasive maneuver” ac on is taken to “jump” elsewhere to a random loca on

with the current row / column in a different direc on as well.

A random amount of encrypted false data is always inser ng into the beginning and end of cipher-text files.

Input plain-text files beyond a small size will cause false encrypted random data to be inserted midway. The

larger the plain-text file – the larger the quan ty and number of mid-stream inser ons.

The “alpha” key-tables randomly self modify / scramble 4 kilo-byte segments of themselves once a minimal

plain-text file size is exceeded. The segment scrambled may start randomly from key-table star ng table byte

0 to the end minus 4 Kbytes. Self modifica on does not cross “alpha” key-table “page” boundaries. A “page”

is an individual “alpha” 256 x 256 byte key-table (65,536 bytes, or 524,288 bits). There may be 256 of these.

Bias arrays start in known states from the buildkey key-table file. Each bias array element is used 1 me only.

Upon a random threshold near the array buffer pool end, the arrays are updated to a new set of values and a

different sequence.

5 addi on “vector” table flagged cells define ac ons to synchronize encrypt & decrypt. (1) Change “alpha”

page; (2) Change “vector” page; (3) Toggle false data on / off; (4) Alpha table self-mod; and (5) bias array

update. Each flag type is guaranteed 1 per row / column min, with the “revector” type at 2 min. More than 1

or 2 may exist as column guarantees are made a er 1 or 2 per row first.

14

July 26, 2021 Version 5M

Key-Table Structure(s)

VectorLite Encryp on Ver 5M u lizes a 2-dimensional “alpha” key-table, as illustrated in Figure 1. The

dimensions of the table are as wide as the range of possible data values to be encrypted at a me – 8 bits.

VectorLite 5M encrypts one 8 bit byte at a me, so the alpha key-tables are 256 x 256 in the (x,y) dimensions

(using Cartesian coordinates). The table element size (depth) matches the depth encrypted at a me: one

byte.

Figure 1 – Alpha Key-Table “Alpha” Elements

During buildkey program crea on, alpha key-tables are populated as follows:

First, a simple table of all possible values within a plain-text file (0 to 255) are placed into the table in equal

quan es - 256. Like values are set +1 column per row, to ensure each row and column has every value.

Next, the equal popula on of 256 values is modified if the “/A” op on was specified. The value following the

“/A” op on is the quan ty range each value may randomly vary +/- from 256. A final adjustment to a few

value quan es is performed at the end to compensate for any +/- accumula ons.

Next and final is a series of random table scrambles, exchanging elements 0 to 65,535 sequen ally with a

randomly indexed element at some other table loca on. This is repeated a large random number of mes.

A er scrambling, the alpha key-table is wri en to an output file. When mul ple alpha key-tables are

specified via “/a” – the process repeats 1 to 254 mes. When the table count is 256, the resultant key-tables

are like a 3-dim key-table, but performance is be er using 1 table (x,y) plain at a me.

15

July 26, 2021 Version 5M

Figure 2 illustrates a por on of a “vector” (aka “a ribute”) key-table. The table is of the same dimensions and

depth as the alpha key-table.

Figure 2, Vector Key-Table “vectors”

A “vector” table contains the next value alpha table search direc onal guidance (i.e. vectors, hence the name),

and flag bits. Flags synchronize encrypt and decrypt ac ons: such as “re-vectoring” when an alpha search

fails; or changing the ac ve key-table page number. Figure 2 shows only the “vectors”.

Two dimension tables have four possible traverses, and the so ware uses literals represen ng N, E, S, & W for

simplicity. These literal values of 0 to 3 consume the 2 LSBs of every table element byte.

Version 5M defines 6 bit flags from the remaining MSB bits. They are: “ReVector”, “False Data On / Off

Toggle”, “Self-Mod”, “A-Page”, “V-Page”, and “Bias Array Update”. Only one flag bit may be defined per

table element. The corresponding (x,y) “alpha” element of a flagged “vector” table cell is ineligible as a

displacement transla on result. Landing on a flagged “vector table” cell always indicates an ac on.

Construc on of a “vector” key-table is performed by popula ng the table with an ordered known set of values

0 to 3 sequen ally. The table is then randomized by scrambling the en re table a large number of mes.

Flags are inserted a er the vector direc on element values are scrambled. Flags have a requirement to be

present with each row & column and cannot be randomly scrambled and missing. Flagged cells make ~3 % the

alpha table entries ineligible for use.

16

July 26, 2021 Version 5M

Key-Table Files

Vectorlite Encryp on enciphers plain-text files one 8-bit byte at a me. Basically, a plain-text input value is

translated to the distance value where the input is found within “alpha” key-table. Plain-text bytes are biased

before the search to eliminate pa erns and sta s cally equalize the values search for. The displacement

results are also biased to eliminate 1st found value favori sm.

Key-File contents and structure:

1 File Header 8 bytes to iden fy VectorLite file type, version, sub-version

2 A Tables Alpha key-tables, quan ty 1 to 256, each at 64 KB size

3 V Tables Vector key-tables, quan ty 1 to 256, each at 64 KB size

4 A Bias Array Alpha bias array of 1024 random bytes values

5 D Bias Array Displacement bias array of 1024 random bytes value

6 R Bias Array Re-Vector bias array of 1024 random bytes values

7 Suffix Bytes Op onal, a random number of random bytes to deceive file size based searches

8 File Header 8 bytes same as (1), but at EOF used to verify correct password unlocking

Key-table files may vary in size from approximately 132 kilo-bytes to 32 mega-bytes, dependent upon the

number of alpha and vector tables. At the maximum , there are 256 of each for a 512 total. The maximum

size approximates the disfavored 3-D table VectorLite version 6 demo release. 3-D tables are not cache or

memory bandwidth PC or server friendly, but 2-D table plains are with today’s CPU cache sizes.

The ac ve Alpha and Vector table pages, should more than 1 exist, maintaining common key index loca ons

rela ve to the start of each. In other words, the (x, y) coordinate loca on for ac ve “alpha” page is always

iden cal to the (x, y) coordinate of the ac ve “vector” page. The rela ve page numbers ac ve will vary.

Password protected key-table files generated with the “/p” op on are verified by encrypt and decrypt via the

proper file header ID and so ware version numbers at the start and end of file.

When encrypt finds mul ple “alpha” or “vector” pages within a key-table file, “alpha” and “vector” key-tables

are “paged” at different random thresholds. An input plain-text file need be sufficient minimal size to warrant

a change. The “alpha” and “vector” ac ve page table numbers o en differ. Encrypt signals these changes to

decrypt by purposely landing on either an A-page or V-page flagged “vector” key-table cell. The page to

switch into is the placed into the cipher-text immediately a erwards, and post-biased so as to randomize it’s

file value and hence weakly encrypt it.

Synchroniza on between encrypt and decrypt is maintained via purposely landing on flagged “vector” key-

table cells throughout the en re encryp on process, when special ac ons are desired. The placement of

“sign-post” values for these special ac ons is eliminated by using this process. The values to use in the special

ac ons are within the cipher-text, but are post-biased to weakly encrypt and randomize them all – hidden in

plain sight among the true and false encrypted plain-text → cipher-text data.

17

July 26, 2021 Version 5M

Encryp on Method / Algorithm

The Basic Encrypt Program Algorithm

1 Unlock key-table file if password protected, and verify the file was constructed via buildkey current version

2 Read all “alpha” and “vector” Key-Tables into program memory (1 to 256 of each).

Set key-tables to the first page of each to start (Page 0 in the C language).

3 Read the 3 bias arrays of 1,024 random numbers each, from the key-table file (A, D, and R bias arrays).

4 Set the first key-table traversing “Direc on Vector” to that of the vector table origin [0,0].

5 Read the first or next 8-bit byte of the input plain-text file (version 5M buffers up to 100k)

6 Change the value of the plain-text byte using the alpha bias array value at the current index, and increment the

index. This create the “alpha” key-table search value. The opera on is (PT + A-Bias) % 256.

7 Search the “alpha key-table,” in the direc on of (4), for the value of calculated (6).

8 If (7) is unsuccessful at loca ng (6) – search for 1st Re-Vector flag cell in direc on (4). Apply R and D bias to the

returned value with math as (6). Output result into the cipher-text file. Repeat steps (7) – (8) a max of 10 mes

if not found con nues on. If 10th not found occurs - execu ng an evasive “jump” by placing a binary 0 + a jump

value distance to randomly change “alpha” / “vector” table (x,y) . Re-start steps (7) and (8) anew.

9 If step (6) was successful, apply a D bias to the distance value returned from the “alpha” table search, and

output the cipher-text value. Increment the D bias array index.

10 Update the new “vector direc on” to the “vector” key-table cell value (9).

11 Update the key-table indexes for the ac ve “alpha” and “vector” key-tables to the loca on (9)

12 < rinse and repeat – i.e. go to (5) –> (un l plain-text file EOF is reached)

Crossing key-table row or column edge boundaries uses circular wrap-around: (255 + 1 = 0), and (0 – 1 = 255).

The alpha search probable miss rate is 38 % and consequently cipher-text files typically >= 60 % in size due to

consecu ve misses in (8). The probability of consecu ve alpha search misses is 0.38 ** N. The ineligible flagged vector

cell alpha table elements contribute ~ 3 % to the miss rate – less than 10% of the total misses.

18

July 26, 2021 Version 5M

Devia ons From The Basic Encrypt Steps:

Encrypted false data is inserted at the beginning and end of every file. The quan ty of false data is random and

propor onal to the plain-text input file size. When the plain-text file size crosses various thresholds, addi onal

randomly placed and larger randomized quan es are placed mid way in batches. The larger the file the larger the

number of inser ons and the larger the quan ty – up to a reasonable maximum.

False data start and end points are signaled from encrypt to decrypt by inser on of the biased distance to a “false data”

flag in the “vector” key-table. These flags are on / off toggles.

Key-table displacement values of zero (0) are not permi ed. When pre-biased input plain-text creates consecu ve

iden cal values, use of the current (x,y) loca on in the “alpha” table is not permi ed. A new loca on must be found.

Cipher-text files will not contain zeroes, except under the circumstance of a ReVector deadlock jump, in step (8) a er 10

unsuccessful search a empts.

Before an a empt is made to to encrypt a false or plain-text data item, thresholds are checked to determine if a me a

special ac on – such as bias array update, key-table self-mod, or table page change.

Mul -Threading

Version 5M encrypt and decrypt is multi threaded. There is a main program to prepare the encryp on threads,

followed upon comple on by a Table-Of-Contents (TOC) thread, followed by the main program’s assembly of the final

cipher-text file from individual cipher-text temp-files created.

A TOC segment resides at near the start of cipher-text files. The segment begins with a random quan ty of enciphered

false data before the true TOC biased data is encountered. Each thread cipher-text segment begins with different

randomized quan es and values of encrypted false data, and ends similarly. Each thread segment also inserts

enciphered biased false data mid stream in propor on to segment plain-text input size assigned by the main program.

Mul threads are created if the plain-text input file size warrants their crea on for a performance gain. Plain-text input

files are divided approximately in equal size but with a randomized variance.

A 4 core, 8 thread Intel I-7 4700 cpu has thread performance gains significant up to 3 or 4 cores, with diminishing returns

there a er. The number of encryp on threads is bounded by the core count found on the CPU and a current upper limit

of 8 for demonstra on purposes. The desktop PC used to develop the so ware observes decreasing marginal gain a er

3 threads, likely due to home desktop memory bandwidth limits. Servers likely will have a higher performance yield.

Future Thread Enabled Features

Mul ple threads create independent self contained thread cipher-text files. These files can be independently

deciphered in a self contained manner. This enables two desirable poten al future features to be added:

1. Transmission of cipher-text segments via dis nct communica on channels, reducing whole file intercep on

2. Randomized scrambling / interleaving of the independent segment transmissions, reducing segment intercep on.

19

July 26, 2021 Version 5M

The Basic Decrypt Program Algorithm

Deciphering the Cipher-Text back into original Plain-Text requires the same key-table file used by encrypt.

The cipher-text file is processed 1 byte sequen ally at a me, using an I/O buffer up to 100 KB

1 Read in Key Tables and bias arrays from the key-table file into program memory

2 Set the current table traversing “Direc on Vector” to the Vector Table origin [0,0].

3 Read the first or next 8-bit byte value of cipher-text from the input file.

4 Compensate for the D-bias of the input byte. Increment the D bias array index.

5 Traverse the alpha and vector key-tables by the value (4) in the direc on of (2)

6 Check for a < revector or other flag > within vector table - if flagged, handle the special opera on cases:

6.a If a re-vector flag, update key-index by R bias

6.b If a bias flag, read the update values from cipher-text and update the arrays

6.c If and alpha or vector key-table page change, read new page value update page number

6.d If a false flag, toggle false data processing from prior state

6.e If a self-mod flag, read the update parameter update the 4 KB alpha key-table segment.

7 If (6) is not a flagged cell , reverse the pre-bias. Increment the alpha key-table index.

8 If false data toggle state is ON – ignore (7) result. If false data state is OFF – pwrite (7) to output file.

9 Set next key-table traverse direc on to new “vector” key-table value at new index.

10 If EOF - <close file>; else - if not EOF <goto 3>

20

July 26, 2021 Version 5M

Notes and Comments

Key-table Sizes: The key-tables are large for an encryp on system, but with today’s large secondary storage

capaci es, solid state disk drives, and computer main memory sizes , complaints of this should be mute. On

an industrial scale, key-table libraries or vaults would be larger, but storage is massive con nues to grow.

Cipher-Text File Sizes: The same argument is made concerning the minimum 60 % cipher-text file size

expansion above the plain-text input file size.

Secret Key Type: The encryp on implements symmetric keys. Inves ga on into an asymmetric

implementa on or enhancement is taking place - me permi ng. Inves ga on into use within protocols like

SSH is underway.

Nested Encryp on / Decryp on: mul ple pass encryp on via the same or different key-files tests successfully.

Addi onal encryp on passes causes the 60 % file size expansion each. Key-files must be used in reverse order

during the decryp on if different.

Encryption Method: The basic enciphering is primi ve in complexity compared to those using polynomials and

complex mathema cal algorithms. The end goal is protec on of the data, not status in the complexity to do

so. VectorLite a empts overwhelm brute force or sta s cal analysis with massive possible key-tables

permuta ons, and a empts to ensure every aspect of the process is randomized. This simple method was not

prac cal un l modern small computers became common place with sufficient memory and cache 15 years

prior.

Hardware: Computer CPUs & ALUs do need nor require the recent AES addi ons. KISS.

Working as Desired: The encrypt “key-trace” op on generates a key-table usage log during the encrypt

program execu on. The files provide a history of plain-text, biased plain-text alpha table search values, alpha

search displacement results, final biased cipher-text values, key-table page and indexes used, in addi on to a

few more items. Data from analysis of these files appears to indicate VectorLite uses the key-tables in the

desired sta s cal random manner and does not favor individual cells. A bell shaped use curve is observed that

fla ens as larger plain-text files are encrypted.

Cipher-Text – Prior Version Pa ern Recogni on: The use of the 3 bias arrays star ng in version 5L appears to

have virtually eliminated the minor cipher-text duplicate byte sequence pa erns detected in prior versions

above which probability theory states should exist.

Cipher-Text Value Pa ern Probability Distribu ons: Significant effort has been made to create the nearly

100% random cipher-text results from any plain-text input file type. Test results are published at the end of

this document. Specific goals were to “fla en the cipher-text output value quan es” sta s cally and

eliminate duplicated byte value pa erns above the minimal due to random chance. The average distance

between like byte values also appears to be successfully randomized sta s cally.

Hence, the tes ng results thus far indicate near best case pure random output may have been achieved.

21

July 26, 2021 Version 5M

Of Sign Posts & Sign Post Values: The encryp on process technically uses what can be categorized as “sign-

posts” to signal special ac ons and synchronize to decryp on. Both sign-post indicators, and sign-post values

exist. Sign-Post indicators are NOT wri en into cipher-text; they are signaled encrypt to decrypt by landing on

falgged “vector” key-table cells. Biased sign-post values are wri en into the cipher-text immediately

following the landing on a special flag cell for 4 special ac ons:

 Item Flag type / Purpose Bytes Value Range Purpose in Encrypt / Decrypt

1 Alpha Key-Table Self Modifica on 1 rand 0 to 255 Used in scrambling algorithm

2 Bias Array Updates: 3 rand 0 to 255 Value changes & scrambling

3 Alpha Key-table page change 1 rand 0 to 255 Page change value

4 Vector Key-table page change 1 rand 0 to 255 Page change value

Sign-post values are randomized (in most cases within bounds) and biased – making detec on challenging.

Buildkey “/A” Alpha-Variability: This op on to vary the count / quan ty of each value in the alpha key-table

could be expanded upon to include variants for ASCII / UTF text document character sets to more heavily favor

alpha-numeric & punctua on character set byte values, language. A future version may implement this if

inves ga on into the subject warrants the effort.

Random Number Usage: Obtaining truly random number sequences for any computer program is problema c

without specialized hardware. The C language run- me library rand() func on is notoriously weak,

implemented as pseudo-random. Sequences are iden cal when seeded the same value, and a database of

some type consis ng of all possible sequences may actually exist somewhee.

Hence, a custom “get_rand ()” func on was created to introduce addi onal complexity and randomness into

the buildkey and encrypt programs. The random program was created to further break library dependence.

Duplicate Func ons Among Programs: No a empt was made to generate a link library of common func ons

or procedures between different programs. Configura on management has not been a development issue.

Coding Style: Simplicity and readability is took precedence over any source code brevity or op miza on.

Be er the compiler op mize performance than someone go bald. White space is cheap, while people’s me is

priceless.

22

